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CRACK INITIATION IN A STIFFENED PLATE

UDC 539.375M. V. Mir-Salim-zade

The fracture mechanics problem of crack initiation in a stiffened plate is considered. The crack
nucleus is modeled by a prefracture zone with bonds between the crack faces, which is treated as a
region of weakened interparticle bonds of the material. The boundary-value problem of the equilibrium
of a stiffened plate with a crack nucleus reduces to a nonlinear singular integrodifferential equation
with a Cauchy type kernel. The strains in the crack initiation zone are found by solving this equation.
The case of the stress state of the plate with a periodic system of prefracture zones is considered.
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Sheet structures are usually fabricated from thin plates reinforced by riveted stiffening ribs to ensure sufficient
strength. The deformation of an unbounded plate reinforced by a regular system of ribs of narrow rectangular cross
sections has been the subject of extensive research (see, for example, [1–4]). Considerable attention has been given
to the analysis of the fracture of a plate stiffened by a regular system of stringers [5–9]. In all indicated papers,
the consideration was confined to a Griffith crack. At the same time, investigation of the initiation of a crack-type
defect is of great significance.

Formulation of the Problem. We consider an elastic isotropic thin plate with transverse stiffening ribs
(stringers) riveted at the points z = ±(2m + 1)L ± iny0 (m = 0, 1, 2, . . . ; n = 1, 2, . . . ). At infinity, the plate
is subjected to homogeneous extension along the stringers by a stress σ∞

y = σ0. For the stringers, we adopt
the hypothesis of a one-dimensional continuum, which assumes that the stringer thickness does not vary under
deformation and that the stress state of the stringer is uniaxial. The stringers do not resist bending and work only
in tension.

The following assumptions are adopted:
1) In the thin-walled sheet structural member (plate), a plane stress state occurs;
2) The stiffening system of stringers is a truss, and the weakening of the stringers due to the attachment is

ignored;
3) The sheet member and the stiffeners interact with each other in the same plane and only in the attachment

zones;
4) All attachment zones (points) are identical, and their radius (the adhesion area) is small compared to the

spacing between them and other characteristic sizes;
5) The effect of an attachment point on both the stringer and the plate is modeled by a point force.
In the computational scheme, the action of the stringers is modeled by unknown equivalent point forces

applied at the points of connection of the ribs with the medium. As the stiffened plate is loaded, prefracture
zones arise in the plate, which are modeled by regions of weakened bonds of the material. It is assumed that the
prefracture zone is oriented toward the maximum tensile stress arising in the stiffened plate. The interaction of the
faces of the prefracture zone is modeled by introducing bonds with a specified strain diagram between the faces of
the prefracture zone. The physical nature of such bonds and the dimensions of the prefracture zone depend on the
chosen material. Generally, the deformation law for the bonds is nonlinear [10–12].
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The problem of the stress–strain state of a deformed solid in which there are layers of overstrained material
can be reduced to the problem of a stress–strain state in an elastic body weakened by a notch whose faces interact
according to some law. With such an approach to solving the crack initiation problem, it is first of all necessary
to establish the relation between the strains and displacements in the deformed material region in which there are
forces of interparticle interaction (attraction between the faces). Generally, the solution of the problem is rather
complicated.

In the case studied here, the initiation of a crack-type defect involves the transition of the prefracture zone
to the region of broken bonds between the surfaces of the material. Since the prefracture zone is small compared to
the remaining part of the stiffened plate, it can mentally be removed and replaced by a notch whose faces interact
according to some law that corresponds to the action of the removed material. In this case, the dimensions of the
prefracture zone are unknown and should be determined during the solution of the problem.

Studies of the regions with disturbed material structure have shown that in the initial stage, prefracture
zones are a narrow elongated layer and an increase in the load results in a secondary system of zones containing
material with partially broken bonds [13].

We consider a prefracture zone of length 2l located on an abscissa segment y = 0, |x| � l. The faces of the
prefracture zone interact through the bonds and thus restrain the defect (crack) initiation. In the mathematical
modeling of the interaction of the faces of the prefracture zone, we assume that between the faces there are bonds
(adhesion forces), whose deformation law is specified. The action of external loads on the plate leads to the
occurrence of strain q(x) in the interfacial bonds in the prefracture zone. Because the problem is symmetric about
the abscissa, these strains have only a normal component. The value of these stresses q(x) and the dimension l of
the prefracture zones are not known beforehand and are to be determined during the solution of the boundary-value
problem of fracture mechanics.

In the problem considered, the edge conditions on the faces of the prefracture zone are given by

y = 0, |x| � l: σy − iτxy = q(x). (1)

The constitutive relations of the problem should be supplemented by an equation relating the opening of the faces
of the prefracture zone and the strains in the bonds. Without loss of generality, this equation can be written as [14]

v+(x, 0) − v−(x, 0) = C(x, q)q(x), (2)

where v+ − v− is the normal component of the openings of the faces of the prefracture zone, x is the affix of the
points of the prefracture zone, and C(x, q) is the effective compliance of the bonds, which depends on their tension.

With the use of the Kolosov–Muskhelishvili formulas [15] and the edge conditions on the faces of the pre-
fracture zone, the problem is reduced to determining two analytical functions Φ(z) and Ψ(z) from the boundary
conditions

y = 0, |x| � l: Φ(x) + Φ(x) + x̄Φ′(x) + Ψ(x) = q(x). (3)

To determine the values of the external load for which crack Initiation occurs, we need to supplement the
formulation by the condition (criterion) of crack formation (rupture of the interparticle bonds of the material). As
such a condition we use the criterion of the critical opening of the faces of the prefracture zone

v+ − v− = δc, (4)

where δc is the characteristic of the material resistance to crack formation. This condition allows us to determine
the parameters of the stiffened plate for which a crack forms in the plate.

Solution of the Boundary-Value Problem. We seek a solution of the boundary-value problem (3) in
the form

ϕ(z) = ϕ0(z) + ϕ1(z), ψ(z) = ψ0(z) + ψ1(z), (5)

where Φ(z) = ϕ′(z); Ψ(z) = ψ′(z); the functions ϕ0(z) and ψ0(z) define the stress and strain fields in the solid plate
without a prefracture zone.

In the case considered, as ϕ0(z) and ψ0(z) we use the functions

ϕ0(z) =
1
4
σ0z − i

2π(1 + κ0)h

∞∑ ′

m=−∞

∞∑ ′

n=−∞
Pmn ln

z −m∗L+ iy0n

z −m∗L− iy0n
,

563



ψ0(z) =
1
2
σ0z − iκ0

2π(1 + κ0)h

∞∑ ′

m=−∞

∞∑ ′

n=−∞
Pmn ln

z −m∗L+ iy0n

z −m∗L− iy0n
(6)

− i

2π(1 + κ0)h

∞∑ ′

m=−∞

∞∑ ′

n=−∞
Pmn

( m∗L− iy0n

z −m∗L− iy0n
− m∗L+ iy0n

z −m∗L+ iy0n

)
.

Here h is the plate thickness, y0 is the spacing between the attachment points, L is half the distance between the
stringers, κ0 is the elastic Muskhelishvili constant, m∗ = 2m+ 1, and Pmn are the point forces to be determined;
the prime at the summation symbol indicates that the index n = m = 0 is eliminated from the summation,.

To determine the analytical functions Φ1(z) and Ω1(z) = zΦ′
1(z) + Ψ1(z) based on (3), (5), and (6), we

obtain the boundary-value problem

y = 0, |x| � l: Φ1(z) + Φ1(z) + Ω1(z) = q(x) + f(x), (7)

where f(x) = −[Φ0(x) + Φ0(x) + xΦ′
0(x) + Ψ0(x)].

Since the stresses in the elastic plate are bounded, the solution of the boundary-value problem (7) should
be sought in the class of everywhere bounded functions. We note that by virtue of the symmetry of the problem
about the axis Ox, the function f(x) is real, and, hence, using (7) over the entire real axis, we have Im Ω1(z) = 0.
Therefore, taking into account the conditions at infinity, we obtain Ω1(z) = 0.

Thus, for the function Φ1(z), we obtain the Dirichlet problem

y = 0, |x| � l: Re Φ1(z) = [f(x) + q(x)]/2,

z → ∞: Φ1(z) → 0.
(8)

The desired solution of problem (8) is written as

Φ1(z) =
√
z2 − l2

2πi

l∫

−l

[f(x) + q(x)] dx√
x2 − l2 (x− z)

. (9)

In view of the behavior of the function Φ1(z) at infinity, the solvability condition for the boundary-value
problem (8) has the form

l∫

−l

f(x) dx√
l2 − x2

+

l∫

−l

q(x) dx√
l2 − x2

= 0. (10)

This relation can be used to determine the dimension l of the prefracture zone.
Using formulas (6), we write the function f(x) in explicit form

f(x) = −σ0 +
1
πh

∞∑

m=1

∞∑

n=1

Pmn
ny0

n2y2
0 + (x−m∗L)2

(3 + v

2
− (1 + v)

(x−m∗L)2

n2y2
0 + (x−m∗L)2

)

+
1
πh

∞∑

m=1

∞∑

n=1

Pmn
ny0

n2y2
0 + (x+m∗L)2

(3 + v

2
− (1 + v)

(x+m∗L)2

n2y2
0 + (x +m∗L)2

)
.

To determine the values of the point forces Pmn (m = 1, 2, . . . ; n = 1, 2, . . .), we use Hooke’s law, according
to which the value of the point force Pmn exerted on each attachment point by the stiffening rib is equal to

Pmn =
EsF

2y0n
Δvmn. (11)

Here Es is Young’s modulus of the material of the stiffening rib, F is the cross-sectional area of the stiffening
rib, 2y0n is the distance between the attachment points, and Δvmn is the relative displacement of the attachment
points, which is equal to the elongation of the corresponding segment of the stiffening rib.

We denote the radius of the attachment zone (point) by a and adopt the natural assumption that in the
examined elastic problem, the relative displacement of the points z = m∗L+ i(ny0−a) and z = m∗L− i(ny0−a) is
equal to the relative displacement of the attachment points Δvmn [16]. This additional condition of displacement
compatibility allows one to find the solution of the problem formulated above.
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Using the complex potentials (5), (6), and (9) and the Kolosov–Muskhelishvili formulas [15], we obtain the
relative displacement of the attachment points Δvmn:

Δvkr = Δv0
kr + Δv1

kr ,

Δv0
kr =

1
2π(1 + κ0)μh

∞∑

m=1

∞∑

n=1

Pmn

[
κ0 ln

C2
1C

2
2

C3C4C5C6

+ b2b
(2k(k −m)L2 + ab

C3C1
+

2k(k +m)L2 + ab

C4C2

)

+ b3b1

(2k(k −m)L2 + ab1
C5C1

+
2k(k +m)L2 + ab1

C6C2

)]
+
σ0

μ
(1 + κ0)b4,

Δv1
kr =

1
πμ

l∫

0

[f(t) + q(t)]F (t)√
l2 − t2

dt.

Here

b = (r − n)y0 − a, b1 = (r + n)y0 − a, b2 = 2(r − n)y0, b3 = 2(r + n)y0,

b4 = ry0 − a, C1 = (k −m)2L2 + a2, C2 = (k +m)2L2 + a2, C3 = (k −m)2L2 + b2,

C4 = (k +m)2L2 + b2, C5 = (k −m)2L2 + b21, C6 = (k +m)2L2 + b21,

F (t) = (1 + κ0)f1(t) + 2b4f2(t),

f1(t) = D sinϕ+
√
l2 − t2 ln

D2 cos2 ϕ+ (D sinϕ−√
l2 − t2)2

D2 cos2 ϕ+ (D sinϕ+
√
l2 − t2)2

,

f2(t) =
D

d2 + d2
1

[kL(d cosϕ− d1 sinϕ) − b4(d1 cosϕ+ d sinϕ)], ϕ =
1
2

arctan
d1

B1
,

B1 = k2L2 − l2 − b24, d1 = 2kLb4, d = t2 − k2L2 + b24, D =
√
A1 , A1 =

√
B2

1 + d2
1 .

The right side of relations (11) contains the unknown parameter l, which characterizes the length of the
prefracture zone, and the strains q(x) in the interfacial bonds in the prefracture zone.

To determine the complex potential Φ1(z), it is necessary to find the strains q(x) in bonds. Using the
Kolosov–Muskhelishvili relation and the boundary value of the function Φ1(z), on the segment |x| � l, we obtain
the equality

Φ+
1 (x) − Φ−

1 (x) =
2μi

1 + κ0

∂

∂x
(v+ − v−). (12)

Using the Sokhotsky–Plemelj formulas [15] and formula (9), we obtain

Φ+
1 (x) − Φ−

1 (x) = − i
√
l2 − x2

π

( l∫

−l

f(t) + q(t)√
l2 − t2 (t− x)

dt
)
. (13)

Substituting expression (13) into the left side of Eq. (12), in view of relation (2), and performing some transforma-
tions, we obtain the following nonlinear integrodifferential equation for the unknown function q(x):

−
√
l2 − x2

π

( l∫

−l

q(t) dt√
l2 − t2 (t− x)

+

l∫

−l

f(t) dt√
l2 − t2 (t− x)

)
=

2μ
1 + κ0

∂

∂x
(C(x, q)q(x)). (14)
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Numerical Algorithm and Analysis of the Solution. Equation (14) is a nonlinear integrodifferential
equation with a Cauchy kernel and can be solved only numerically. Its solution can be made using a collocation
scheme with approximation of the unknown function. In the case where the deformation law of the bonds is
nonlinear, it is reasonable to determine the strains q(x) [see (2)] in the bonds using an iterative scheme similar to
that used in the method of elastic solutions [17].

To avoid solving the integrodifferential equation, we represent (14) as

−1 + κ0

2μ

x∫

−l

Q(x) dx = C(x, q)q(x), (15)

where

Q(x) =
√
l2 − x2

π

( l∫

−l

q(t) dt√
l2 − t2 (t− x)

+

l∫

−l

f(t) dt√
l2 − t2 (t− x)

)
.

We partition the segment (−l, l) into M nodes tm (m = 1, 2, . . . ,M) and require that condition (15) be
satisfied at these points. As a result, we obtain an algebraic system of M equations for the approximate values of
q(tm) (m = 1, 2, . . . ,M):

C0Q(t1) = C(t1, q(t1))q(t1),

C0(Q(t1) +Q(t2)) = C(t2, q(t2))q(t2),

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
(16)

C0

M∑

m=1

Q(tm) = C(tM , q(tM ))q(tM ).

Here

C0 = −1 + κ0

2μ
πl

M
.

In the derivation of the algebraic system, the integration interval was reduced to the interval [−1, 1] and the
integrals were then replaced by finite sums by means of the Gauss quadrature formulas.

Since the length l of the prefracture zones was unknown, the algebraic system (16) turned out to be nonlinear
even for linearly elastic bonds. The obtained algebraic systems (11) and (16) and Eq. (10) are coupled and should
be solved simultaneously. The integrals in Eqs. (11) and (10), were replaced by sums using the Gauss quadrature
formula. In the case of linearly elastic bonds, their compliance C(x, q) is constant. The algebraic system (11), (16)
and (10) was solved using the method of successive approximations, which consists of the following. System (11), (16)
is solved for a certain definite value l∗ with respect to M+N1×N2 unknowns q01 , q

0
2 , . . . , q

0
M and P11, P12, . . . , PN1N2 .

The value of l∗ and the obtained quantities q01 , q02 , . . . , q0M and P11, P12, . . . , PN1N2 are substituted into Eq. (10),
which was earlier represented as a sum. An arbitrary value of the parameter l∗ and its corresponding values of
q01 , q

0
2 , . . . , q

0
M and P11, P12, . . . , PN1N2 , generally speaking, do not satisfy Eq. (10) of the system. Therefore, the

calculations are repeated until they yield the value of the parameter l∗ for which the last equation (10) of the system
is satisfied with the specified accuracy.

In the case of a nonlinear deformation law for the bonds, the stains in the prefracture zone were determined
using a method similar to the method of elastic solutions [17].

It is assumed that for v+ − v− � v∗, the deformation law of the interparticle bonds (adhesion forces) is
linear.

The first step of the iterative calculation process consists of solving system (11), (16), (10) for linearly elastic
interparticle bonds. The subsequent iterations are satisfied only if the inequality v+ − v− > v∗ holds on a certain
part of the prefracture zone. For such iterations, the system of equations is solved in each step for quasielastic bonds
with an effective compliance variable along the prefracture zone and dependent on the stains in the bonds obtained
in the previous calculation step. The effective compliance is calculated in the same way as the secant modulus in
the method of variable elastic parameters [18].
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Fig. 1. Length of the prefracture zone l/L versus external loading σ0/qmax.

The iterative process is terminated when the strains along the prefracture zone obtained in two successive
iterations become little different from each other.

The nonlinear part of the strain curve was approximated by a bilinear relation [14] whose ascending segment
corresponded to the elastic deformation of the bonds (0 < v+ − v− � v∗) with their maximum tension. For
v+ − v− > v∗, the deformation law was described by a nonlinear dependence determined by the points (v∗, σ∗) and
(δc, σc); at σc � σ∗, this dependence became increasing linear and corresponding to the linear strengthening for the
elastoplastic deformation of the bonds.

Figure 1 shows a curve of the length of the prefracture zone d = l/L versus the dimensionless external
loading σ0/qmax for the following values of the free parameters of the problem: ε1 = a0/L = 0.01, ε = y0/L = 0.25,
ν = 0.3, E = 7.1 · 104 MPa (B95 alloy), Es = 11.5 · 104 MPa (60/40 aluminum/steel composite), N1 = N2 = 14,
M = 30, F/(y0h) = 1, v∗ = 10−6 m, σ∗ = 130 MPa, σcr/σ∗ = 2, and δc = 2 · 10−6 m; effective compliance of the
bonds C = 2 · 10−7 m/MPa.

Figure 2 shows the strain distributions in the bonds of the prefracture zone.
To determine the limiting state in which a crack forms, we use criterion (4). In this case, the condition

determining the limiting value of the external load has the form

C(x0, q)q(x0) = δc. (17)

In the problem considered, one might expect that x0 = 0, i.e., the point x = x0 is at the center of the prefracture
zone.

Simultaneous solution of the algebraic systems (11), (16), (10), and (17) provides (for specified fracture
resistance characteristics of the material) the critical external load and the length of the prefracture zone lc for the
limit equilibrium state at which a crack appears.

Figure 3 gives a curve of the critical load σ∗
0/σt versus relative opening δ∗/l [δ∗ = πδcμ/(1 + κ0)σt] in the

center of the prefracture zone.
Periodic System of Prefracture Zones. Let in the stiffened plate under loading there is a periodic

system of rectilinear prefracture zones of length 2l with a period ω, located on the abscissa. In the case studied, the
initiation of crack nuclei is the process of transition of the prefracture zone to the region of broken bonds between
the plate surfaces. The dimensions of the prefracture zones are not known beforehand and are to be determined
during the solution of the problem.

The edge conditions on the faces of the periodic system of prefracture zones are written as

y = 0, |x−mω| � l: σy − iτxy = q(x).
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Fig. 2. Distribution of the normal forces q/σ0 in the interfacial bonds in the prefracture zone:
1) linear dependence; 2) bilinear dependence.

Fig. 3. Critical load σ∗
0/σt versus relative opening δ∗/l at the center of the prefracture zone.

In this case, a problem similar to the problem for one prefracture zone is solved. For the function Φ1(z), we obtain
the Dirichlet problem

y = 0, |x−mω| � l: Re Φ1(z) = [f(x) + q(x)]/2,

z → ∞: Φ1(z) → 0.
(18)

By means of the transformation w = sin (πz/ω), we convert from the physical plane z to the parametric
plane of the complex variable w. In this case, the appearance of the periodic system of prefracture zones of the
plane z becomes an infinite-sheeted Riemann surface with a notch (−l0, l0), where l0 = sin (πl/ω).

The required solution of problem (18) in the class of everywhere bounded functions is written as

Φ1(z) =
X(z)
2πi

l0∫

−l0

f(x) + q(x)
X(x)(sin (πx/ω) − sin (πz/ω))

π

ω
cos

πx

ω
dx.

Here X(z) is a branch of the function
√

sin2(πz/ω)− sin2(πl/ω) that has the form sin (πz/ω) as |z| → ∞.
In view of the behavior of the function Φ1(z) at infinity, the condition of solvability of the boundary-value

problem (18) is written as
l0∫

−l0

f(x) + q(x)
X(x)

π

ω
cos

πx

ω
dx = 0.

This condition is used to determine the length l of the prefracture zone.
In the case considered, we obtain the following nonlinear integrodifferential equation for the unknown function

q(x):

−X∗(x)
π

l0∫

−l0

f(t) + q(t)
X∗(t)(sin (πt/ω) − sin (πx/ω))

π

ω
cos

πt

ω
dt =

2μ
1 + κ0

∂

∂x
[C(x, q)q(x)]. (19)

Here X∗(x) =
√

sin2(πl/ω) − sin2(πx/ω).
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The sought values of the point forces are determined by solving the infinite system of equations (11). By virtue
of the periodicity of the problem, this system degenerates into one infinite algebraic system for Pm1 (m = 1, 2, . . . ).
This leads to a change in the expressions for Δvmn, which are cumbersome and not given here.

The nonlinear integrodifferential equation (19) are represented as

−1 + κ0

2μ

x∫

−l0

Q1(x) dx = C(x, q)q(x), (20)

where

Q1(x) =
X∗(x)
π

l0∫

−l0

q(t) + f(t)
X∗(t)(sin (πt/ω) − sin (πx/ω))

π

ω
cos

πt

ω
dt.

The algebraization of Eq. (20) is implemented in the same way as in the case of one prefracture zone. As
a result, instead of (20) we obtain a nonlinear algebraic system M of equations for approximate values of q(tm)
(m = 1, 2, . . . ,M). The numerical solution of this system of equations is constructed as was described above for the
case of one prefracture zone.

Using the solution obtained, the expression for the opening of the faces of the prefracture zone can be written
as

v+(x, l, σ0) − v−(x, l, σ0) =
1 + κ0

2μ

l0∫

0

[q(t) + f(t)]F1(t, x)
X∗(t)

π

ω
cos

πt

ω
dt,

where

F1(t, x) = X∗(x) +
1
2
X∗(x) ln

X∗(t) −X∗(x)
X∗(t) +X∗(x)

.

The critical external loads at which cracks form are given by the relations

1 + κ0

2μ

l0∫

0

[q(t) + f(t)]F1(t, x0)
X∗(t)

π

ω
cos

πt

ω
dt = δc.

In addition, it is possible to use condition (17).
Analysis of the initiation of a crack-type defect in a stiffened plate under loading reduces to a joint parametric

study of the resolving algebraic system of the problem and the crack formation criterion (17) for various values of
the free parameters of the stiffened plate (the mechanical characteristics of the plate and stringer materials and the
geometrical dimensions of the stiffening members).
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